
Advanced Crash Course in Supercomputing: 
Parallelism 

Rebecca Hartman-Baker 
Oak Ridge National Laboratory 

hartmanbakrj@ornl.gov 

© 2004‐2011 Rebecca Hartman‐Baker.  Reproduc9on permi;ed for non‐
commercial, educa9onal use only. 



2 

Outline 

I.  Parallelism 
II.  Supercomputer Architecture 
III.  Basic MPI 
IV.  MPI Collectives 
V.  Performance Evaluation 



3 

I. PARALLELISM 

Parallel Lines by Blondie.  Source: 
http://xponentialmusic.org/blogs/885mmmm/2007/10/09/403-blondie-hits-1-with-heart-of-glass/ 



4 

I. Parallelism 

• Concepts of parallelization 
• Serial vs. parallel 
• Parallelization strategies 



5 

Parallelization Concepts 

• When performing task, some subtasks depend on one 
another, while others do not 

• Example: Preparing dinner 
–  Salad prep independent of lasagna baking 
–  Lasagna must be assembled before baking 

•  Likewise, in solving scientific problems, some tasks 
independent of one another 



6 

Serial vs. Parallel 

• Serial: tasks must be performed in sequence 
• Parallel: tasks can be performed independently in any 

order 



7 

Serial vs. Parallel: Example 

• Example: Preparing dinner 
– Serial tasks: making sauce, 

assembling lasagna, baking 
lasagna; washing lettuce, 
cutting vegetables, 
assembling salad 

– Parallel tasks: making 
lasagna, making salad, 
setting table 



8 

Serial vs. Parallel: Example 

• Could have several 
chefs, each performing 
one parallel task 

• This is concept behind 
parallel computing 



9 

Parallel Algorithm Design: PCAM 

• Partition: Decompose problem into fine-grained tasks to 
maximize potential parallelism 

• Communication: Determine communication pattern 
among tasks 

• Agglomeration: Combine into coarser-grained tasks, if 
necessary, to reduce communication requirements or 
other costs 

• Mapping: Assign tasks to processors, subject to tradeoff 
between communication cost and concurrency 

(taken from Heath: Parallel Numerical Algorithms) 



10 

Discussion: Jigsaw Puzzle* 

• Suppose we want to do 5000 piece jigsaw puzzle 
•  Time for one person to 
 complete puzzle: n hours 

• How can we decrease walltime  
 to completion? 

* Thanks to Henry Neeman 



11 

Discussion: Jigsaw Puzzle 

• Add another person at the 
table 
–  Effect on wall time 
–  Communication 
–  Resource contention 

• Add p people at the table 
–  Effect on wall time 
–  Communication 
–  Resource contention 



12 

Discussion: Jigsaw Puzzle 

• What about: p people,  p 
tables, 5000/p pieces 
each? 

• What about: one person 
works on river, one works 
on sky, one works on 
mountain, etc.? 



13 

II. ARCHITECTURE 

Image: Louvre Abu Dhabi – Abu Dhabi, UAE, designed by Jean Nouvel, from 
h;p://www.inhabitat.com/2008/03/31/jean‐nouvel‐named‐2008‐pritzker‐architecture‐laureate/ 



14 

II. Supercomputer Architecture 

• What is a supercomputer? 
• Conceptual overview of architecture 

Cray 1 
(1976) 

IBM Blue 
Gene 
(2005) 

Architecture of IBM Blue Gene 

Cray XT5 
(2009) 



15 

What Is a Supercomputer? 

•  “The biggest, fastest computer right this minute.” -- Henry 
Neeman 

• Generally 100-10,000 times more powerful than PC 
•  This field of study known as supercomputing, high-

performance computing (HPC), or scientific computing 
• Scientists use really big computers to solve really hard 

problems 



16 

SMP Architecture 

• Massive memory, shared by multiple processors 
• Any processor can work on any task, no matter its location 

in memory 
•  Ideal for parallelization of sums, loops, etc. 



17 

Cluster Architecture 

• CPUs on racks, do computations (fast) 
• Communicate through myrinet connections (slow) 
• Want to write programs that divide computations evenly but 

minimize communication 



18 

State-of-the-Art Architectures 

•  Today, hybrid architectures gaining acceptance 
• Multiple {quad, 8, 12}-core nodes, connected to other nodes 

by (slow) interconnect 
• Cores in node share memory (like small SMP machines) 
• Machine appears to follow cluster architecture (with multi-

core nodes rather than single processors) 
•  To take advantage of all parallelism, use MPI (cluster) and 

OpenMP (SMP) hybrid programming 



19 

III. MPI 

MPI also stands for Max Planck Institute for Psycholinguistics.  Source: http://www.mpi.nl/WhatWeDo/istitute-pictures/building 



20 

III. Basic MPI 

•  Introduction to MPI 
• Parallel programming concepts 
•  The Six Necessary MPI Commands 
• Example program 



21 

Introduction to MPI 

•  Stands for Message Passing Interface 
•  Industry standard for parallel programming (200+ page document) 
•  MPI implemented by many vendors; open source implementations 

available too 
–  ChaMPIon-PRO, IBM, HP, Cray vendor implementations 
–  MPICH, LAM-MPI, OpenMPI (open source) 

•  MPI function library is used in writing C, C++, or Fortran programs 
in HPC 

•  MPI-1 vs. MPI-2: MPI-2 has additional advanced functionality and 
C++ bindings, but everything learned today applies to both 
standards 



22 

Parallelization Concepts 

•  Two primary programming paradigms: 
–  SPMD (single program, multiple data) 
–  MPMD (multiple programs, multiple data) 

• MPI can be used for either paradigm 



23 

SPMD vs. MPMD 

• SPMD: Write single program that will perform same 
operation on multiple sets of data 
–  Multiple chefs baking many lasagnas 
–  Rendering different frames of movie 

• MPMD: Write different programs to perform different 
operations on multiple sets of data 
–  Multiple chefs preparing four-course dinner 
–  Rendering different parts of movie frame 

• Can also write hybrid program in which some processes 
perform same task 



24 

The Six Necessary MPI Commands 

•  int MPI_Init(int *argc, char **argv)
•  int MPI_Finalize(void)
•  int MPI_Comm_size(MPI_Comm comm, int *size)
•  int MPI_Comm_rank(MPI_Comm comm, int *rank)
•  int MPI_Send(void *buf, int count, 
MPI_Datatype datatype, int dest, int tag, 
MPI_Comm comm)

•  int MPI_Recv(void *buf, int count, 
MPI_Datatype datatype, int source, int tag, 
MPI_Comm comm, MPI_Status *status)



25 

Initiation and Termination 

• MPI_Init(int *argc, char **argv) 
initiates MPI 
–  Place in body of code after variable declarations and before any 

MPI commands 

• MPI_Finalize(void) shuts down MPI 
–  Place near end of code, after last MPI command 



26 

Environmental Inquiry 

• MPI_Comm_size(MPI_Comm comm, int 
*size)  
–  Find out number of processes 
–  Allows flexibility in number of processes used in program 

• MPI_Comm_rank(MPI_Comm comm, int 
*rank)  
–  Find out identifier of current process 
–  0 ≤ rank ≤ size-1 



27 

Message Passing: Send 

• MPI_Send(void *buf, int count, 
MPI_Datatype datatype, int dest, int 
tag, MPI_Comm comm) 
–  Send message of length count bytes and datatype datatype 

contained in buf with tag tag to process number dest in 
communicator comm 

–  E.g. MPI_Send(&x, 1, MPI_DOUBLE, manager, 
me, MPI_COMM_WORLD)



28 

Message Passing: Receive 

• MPI_Recv(void *buf, int count, 
MPI_Datatype datatype, int source, 
int tag, MPI_Comm comm, MPI_Status 
*status)
–  Receive message of length count bytes and datatype 
datatype with tag tag in buffer buf from process number 
source in communicator comm and record status status 

–  E.g. MPI_Recv(&x, 1, MPI_DOUBLE, source, 
source, MPI_COMM_WORLD, &status)



29 

Message Passing 

• WARNING! Both standard send and receive functions are 
blocking 

• MPI_Recv returns only after receive buffer contains 
requested message 

• MPI_Send may or may not block until message received 
(usually blocks) 

• Must watch out for deadlock 



30 

Deadlocking Example (Always) 

#include <mpi.h>
#include <stdio.h>
int main(int argc, char **argv) {
    int me, np, q, sendto;
    MPI_Status status;
    MPI_Init(&argc, &argv);
    MPI_Comm_size(MPI_COMM_WORLD, &np);
    MPI_Comm_rank(MPI_COMM_WORLD, &me);
    if (np%2==1) return 0;
    if (me%2==1) {sendto = me-1;}
    else {sendto = me+1;}
    MPI_Recv(&q, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD, 
        &status);
    MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD);
    printf(“Sent %d to proc %d, received %d from proc %d\n”, 
        me, sendto, q, sendto);
    MPI_Finalize();
    return 0;
}



31 

Deadlocking Example (Sometimes) 

#include <mpi.h>
#include <stdio.h>
int main(int argc, char **argv) {
    int me, np, q, sendto;
    MPI_Status status;
    MPI_Init(&argc, &argv);
    MPI_Comm_size(MPI_COMM_WORLD, &np);
    MPI_Comm_rank(MPI_COMM_WORLD, &me);
    if (np%2==1) return 0;
    if (me%2==1) {sendto = me-1;}
    else {sendto = me+1;}
    MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD);
    MPI_Recv(&q, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD, 
        &status);
    printf(“Sent %d to proc %d, received %d from proc %d\n”, 
        me, sendto, q, sendto);
    MPI_Finalize();
    return 0;
}



32 

Deadlocking Example (Safe) 
#include <mpi.h>
#include <stdio.h>
int main(int argc, char **argv) {
    int me, np, q, sendto;
    MPI_Status status;
    MPI_Init(&argc, &argv);
    MPI_Comm_size(MPI_COMM_WORLD, &np);
    MPI_Comm_rank(MPI_COMM_WORLD, &me);
    if (np%2==1) return 0;
    if (me%2==1) {sendto = me-1;}
    else {sendto = me+1;}
    if (me%2 == 0) {
        MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD);
        MPI_Recv(&q, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD, 
            &status);
} else {

        MPI_Recv(&q, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD, 
            &status);
        MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD);
    }
    printf(“Sent %d to proc %d, received %d from proc %d\n”, me, 
        sendto, q, sendto);
    MPI_Finalize();
    return 0;
}



33 

Explanation: Always Deadlock 
Example 

•  Logically incorrect 
• Deadlock caused by blocking MPI_Recvs 
• All processes wait for corresponding MPI_Sends to begin, 

which never happens 



34 

Explanation: Sometimes Deadlock 
Example 

•  Logically correct 
• Deadlock could be caused by MPI_Sends competing for 

buffer space 
• Unsafe because depends on system resources 
• Solutions: 

–  Reorder sends and receives, like safe example, having evens send 
first and odds send second 

–  Use non-blocking sends and receives or other advanced functions 
from MPI library (see MPI standard for details) 



35 

IV. MPI COLLECTIVES 
“Collective Farm Harvest Festival” (1937) by Sergei Gerasimov.  Source: 
http://max.mmlc.northwestern.edu/~mdenner/Drama/visualarts/neorealism/34harvest.html 



36 

MPI Collectives 

• Communication involving group of processes 
• Collective operations 

–  Broadcast 
–  Gather 
–  Scatter 
–  Reduce 
–  All- 
–  Barrier 



37 

Broadcast 

• Perhaps one message needs to be sent from manager to all 
worker processes 

• Could send individual messages 
•  Instead, use broadcast – more efficient, faster 
• int MPI_Bcast(void* buffer, int 
count, MPI_Datatype datatype, int 
root, MPI_Comm comm)



38 

Gather 

•  All processes need to send same (similar) message to manager 
•  Could implement with each process calling MPI_Send(…) 

and manager looping through MPI_Recv(…)
•  Instead, use gather operation – more efficient, faster 
•  Messages concatenated in rank order 
•  int MPI_Gather(void* sendbuf, int 
sendcount, MPI_Datatype sendtype, void* 
recvbuf, int recvcount, MPI_Datatype 
recvtype, int root, MPI_Comm comm)

•  Note: recvcount = number of items received from each 
process, not total 



39 

Gather 

•  Maybe some processes need to send longer messages than 
others 

•  Allow varying data count from each process with 
MPI_Gatherv(…)

•  int MPI_Gatherv(void* sendbuf, int 
sendcount, MPI_Datatype sendtype, void* 
recvbuf, int *recvcounts, int *displs, 
MPI_Datatype recvtype, int root, 
MPI_Comm comm) 

•  recvcounts is array; entry i in displs array specifies 
displacement relative to recvbuf[0] at which to place data 
from corresponding process number 



40 

Scatter 

•  Inverse of gather: split message into NP equal pieces, with ith 
segment sent to ith process in group 

•  int MPI_Scatter(void* sendbuf, int 
sendcount, MPI_Datatype sendtype, void* 
recvbuf, int recvcount, MPI_Datatype 
recvtype, int root, MPI_Comm comm)

•  Send messages of varying sizes across processes in group: 
MPI_Scatterv(…)

•  int MPI_Scatterv(void* sendbuf, int 
*sendcounts, int *displs, MPI_datatype 
sendtype, void* recvbuf, int recvcount, 
MPI_Datatype recvtype, int root, 
MPI_Comm comm)



41 

Reduce 

• Perhaps we need to do sum of many subsums owned by all 
processors 

• Perhaps we need to find maximum value of variable across 
all processors 

• Perform global reduce operation across all group members 
• int MPI_Reduce(void* sendbuf, void* 
recvbuf, int count, MPI_Datatype 
datatype, MPI_Op op, int root, 
MPI_Comm comm)



42 

Reduce: Predefined Operations 

MPI_Op Meaning  Allowed Types 

MPI_MAX Maximum  Integer, floa9ng point 

MPI_MIN Minimum  Integer, floa9ng point 

MPI_SUM Sum  Integer, floa9ng point, complex 

MPI_PROD Product  Integer, floa9ng point, complex 

MPI_LAND Logical and  Integer, logical 

MPI_BAND Bitwise and  Integer, logical 

MPI_LOR Logical or  Integer, logical 

MPI_BOR Bitwise or  Integer, logical 

MPI_LXOR Logical xor  Integer, logical 

MPI_BXOR Bitwise xor  Integer, logical 

MPI_MAXLOCMaximum value and loca9on  * 

MPI_MINLOCMinimum value and loca9on  * 



43 

Reduce: Operations 

• MPI_MAXLOC and MPI_MINLOC
–  Returns {max, min} and rank of first process with that value 
–  Use with special MPI pair datatype arguments: 

•  MPI_FLOAT_INT (float and int) 
•  MPI_DOUBLE_INT (double and int) 
•  MPI_LONG_INT (long and int) 
•  MPI_2INT (pair of int) 

–  See MPI standard for more details 

• User-defined operations 
–  Use MPI_Op_create(…) to create new operations 
–  See MPI standard for more details 



44 

All- Operations 

• Sometimes, may want to have result of gather, scatter, or 
reduce on all processes 

• Gather operations 
–  int MPI_Allgather(void* sendbuf, int 
sendcount, MPI_Datatype sendtype, void* 
recvbuf, int recvcount, MPI_Datatype 
recvtype, MPI_Comm comm)

–  int MPI_Allgatherv(void* sendbuf, int 
sendcount, MPI_Datatype sendtype, void* 
recvbuf, int *recvcounts, int *displs, 
MPI_Datatype recvtype, MPI_Comm comm) 



45 

All-to-All Scatter/Gather 

• Extension of Allgather in which each process sends 
distinct data to each receiver 

• Block j from process i is received by process j into ith 
block of recvbuf

• int MPI_Alltoall(void* sendbuf, int 
sendcount, MPI_Datatype sendtype, 
void* recvbuf, int recvcount, 
MPI_Datatype recvtype, MPI_Comm 
comm)

• Also corresponding AlltoAllv function available 



46 

All-Reduce 

• Same as MPI_Reduce except result appears on all 
processes 

• int MPI_Allreduce(void* sendbuf, 
void* recvbuf, int count, 
MPI_Datatype datatype, MPI_Op op, 
MPI_Comm comm)



47 

Barrier 

•  In algorithm, may need to synchronize processes 
• Barrier blocks until all group members have called it 
• int MPI_Barrier(MPI_Comm comm)



48 

V. PERFORMANCE 
EVALUATION 

Source: http://img.domaintools.com/blog/dt-improved-performance.jpg 



49 

V. Performance Evaluation  

• Efficiency 
• Scalability 
• Performance Modeling 



50 

Efficiency 

• How well does parallel program perform compared to serial 
program (or parallel program on 1 processor)? 

• E = efficiency, N = # processors, Tp = time for p processors 



51 

Efficiency 

•  Ideally, EN = 1; realistically, EN < 1. 
•  Factors influencing efficiency 

–  Load balance (evenly distribute work for better efficiency) 
–  Concurrency (minimize idle time on all processors) 
–  Overhead (minimize work that serial computation would not do, 

e.g. communication) 



52 

Scalability: Speedup 

• How well does parallel program take advantage of additional 
processors? 

•  S = speedup, N = # processors, Tp = time for p processors 



53 

Determining Scalability of Program 

• How to measure scalability 
–  Fixed problem size, measure TN for different N’s 
–  Increase problem size proportional to N, compare TN 

• Repeat performance runs at least 3 times for each N (ideally 
>5 times) 

• Plot on log-log graph; slope of line determines scalability 





55 

Performance Evaluation 

• Create performance model 

• Examine parallel algorithm and figure out which parts fit in 
each category 

• Perform least-squares fit with scalability data 



56 

Benchmarking and Performance: 
Example 

• Example of real program: three-tier parallel program from 
my dissertation 

•  The problem: Compute diffusion function 
–  Compute f matrices, each matrix and each matrix entry 

independent of all others 
–  Perform matrix-vector multiply for each matrix and take norm of 

result 
–  Take weighted average of f results 



57 

Example: Schematic Overview of 
Algorithm 



58 

Example: Categorize Algorithm 

Communication Computation Serial (Idle) 

Manager: send information
 about computation to All 

Manager: Initialize 

All: Compute matrix
 entries using quadrature 

Workers: Send matrix
 entries to Drivers 

Drivers: Compute matrix
/vector multiply and norm 

(Worker processes are idle) 

Drivers: Send results to
 manager 

Compute final function
 evaluation (All processes
 except Manager are idle) 

Tim
e 



59 

Example: Performance Evaluation 

•  N = # processors 
•  d = # drivers 
•  f = stencil size 
•  P(N, f) = max # entries 

computed by 1 proc  

•  ts = message startup time 
•  tquad = avg time to compute one entry 
•  tinit = time spent by manager in serial 

For three-tier algorithm, 



60 

Example: Performance Evaluation 

•  Using least squares solve, we obtain 



61 

Bibliography/Resources: Programming 
Concepts 

• Heath, Michael T. (2010) Notes for CS554: Parallel 
Numerical Algorithms, 
http://www.cse.illinois.edu/courses/cs554/notes/
index.html 

• MPI Deadlock and Suggestions 
http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/
CommonDoc/MessPass/MPIDeadlock.html 



62 

Bibliography/Resources: MPI/ MPI 
Collectives 

• Snir, Marc, Steve W. Otto, Steven Huss-Lederman, 
David W. Walker, and Jack Dongarra. (1996) MPI:The 
Complete Reference. Cambridge, MA: MIT Press. (also 
available at 
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html) 

• MPICH Documentation 
http://www-unix.mcs.anl.gov/mpi/mpich/ 

• C, C++, and FORTRAN bindings for MPI-1.2 
http://www.lam-mpi.org/tutorials/bindings/ 



63 

Bibliography/Resources: MPI/ MPI 
Collectives 

• Message Passing Interface (MPI) Tutorial 
https://computing.llnl.gov/tutorials/mpi/ 

• MPI Standard at MPI Forum 
–  MPI 1.1: 

http://www.mpi-forum.gov/docs/mpi-11-html/mpi-report.html#Node0 
–  MPI-2: 

http://www.mpi-forum.org/docs/mpi-20-html/mpi2-
report.htm#Node0 



64 

Bibliography/Resources: 
Benchmarking and Performance 

• Heath, Michael T. (2010) Notes for CS554: Parallel 
Numerical Algorithms, 
http://www.cse.illinois.edu/courses/cs554/notes/index.html 

• Hartman-Baker, Rebecca J. (2005) The Diffusion Equation 
Method for Global Optimization and Its Application to 
Magnetotelluric Geoprospecting, Department of Computer 
Science, University of Illinois at Urbana-Champaign, 
http://www.cs.uiuc.edu/research/techreports.php?
report=UIUCDCS-R-2005-2578 


